Identifying codes in line graphs
نویسندگان
چکیده
An identifying code of a graph is a subset of its vertices such that every vertex of the graph is uniquely identified by the set of its neighbours within the code. We study the edge-identifying code problem, i.e. the identifying code problem in line graphs. If γID(G) denotes the size of a minimum identifying code of an identifiable graph G, we show that the usual bound γID(G) ≥ ⌈log2(n+1)⌉, where n denotes the order of G, can be improved to Θ( √ n) in the class of line graphs. Moreover, this bound is tight. We also prove that the upper bound γID(L(G)) ≤ 2|V (G)|−5, where L(G) is the line graph of G, holds (with two exceptions). This implies that a conjecture of R. Klasing, A. Kosowski, A. Raspaud and the first author holds for a subclass of line graphs. Finally, we show that the edge-identifying code problem is NP-complete, even for the class of planar bipartite graphs of maximum degree 3 and arbitrarily large girth.
منابع مشابه
Combinatorial and algorithmic aspects of identifying codes in graphs. (Aspects combinatoires et algorithmiques des codes identifiants dans les graphes)
v Combinatorial and algorithmic aspects of identifying codes in graphs Abstract: An identifying code is a set of vertices of a graph such that, on the one hand, each vertex out of the code has a neighbour in the code (the domination property), and, on the other hand, all vertices have a distinct neighbourhood within the code (the separation property). In this thesis, we investigate combinatoria...
متن کاملOptimal bounds on codes for location in circulant graphs
Identifying and locating-dominating codes have been studied widely in circulant graphs of type Cn(1, 2, 3, . . . , r) over the recent years. In 2013, Ghebleh and Niepel studied locatingdominating and identifying codes in the circulant graphs Cn(1, d) for d = 3 and proposed as an open question the case of d > 3. In this paper we study identifying, locating-dominating and self-identifying codes i...
متن کاملIdentifying Codes in Vertex-Transitive Graphs and Strongly Regular Graphs
We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2 ln(|V |) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that re...
متن کاملIdentifying codes in vertex-transitive graphs
We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2 ln(|V |) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that re...
متن کاملIdentifying codes of degree 4 Cayley graphs over Abelian groups
In this paper a wide family of identifying codes over regular Cayley graphs of degree four which are built over finite Abelian groups is presented. Some of the codes in this construction are also perfect. The graphs considered include some well-known graphs such as tori, twisted tori and Kronecker products of two cycles. Therefore, the codes can be used for identification in these graphs. Final...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Graph Theory
دوره 73 شماره
صفحات -
تاریخ انتشار 2013